## SPREADING OF A VISCOUS DROP ON IMPACT

## E. I. Andriankin

Zhurnal Prikladnoi i Tekhnicheskoi Fiziki, Vol. 7, No. 5, pp. 142-145, 1966

The problem of the inertialess spreading of a drop due to impact compression was solved by Reynolds on the assumption of constancy of the coefficient of viscosity and was used in [1] to analyze the sensitivity of liquid explosives. It is of interest to take into account inertia forces and the variation of the coefficient of viscosity $\mu$ with temperature since the heating of the liquid and the deceleration of the striker depend on these factors. The outcome of the solution for steady-state conditions is also discussed.

We will assume that the radius $R$ of the base of the striker is the same as the initial radius of the thin cylindrical layer of viscous substance of thickness $\delta_{0}$. The mass of the striker is $m$ and its initial velocity is $V_{0}$. After simplifications which depend on the smallness of the ratio $\delta_{0} / R$, the hydrodynamic equations can be written thus:

$$
\begin{gather*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}+v \frac{\partial u}{\partial z}=-\frac{1}{\rho_{0}} \frac{\partial p}{\partial z}+\frac{1}{\rho_{0}} \frac{\partial}{\partial z} \mu \frac{\partial u}{\partial z}, \frac{\partial p}{\partial z}=0 \\
\frac{1}{r} \frac{\partial u r}{\partial r}+\frac{\partial v}{\partial z}=0, \quad u(r, 0, t)=0, \quad u(r, \delta, t)=0 \\
v(r, 0, t)=0, v(r, \delta, t)=w, p(R, t)=0 \tag{1}
\end{gather*}
$$

We will assume that the liquid does not conduct heat. Then the dissipated energy in a Lagrangian particle with coordinates $r_{0}$ and $z_{0}$ is conserved

$$
\begin{aligned}
& \left(\frac{d T}{d t}\right)_{r_{0}, z_{0}}=\frac{\mu}{p_{0} c_{p}}\left(\frac{\partial u}{\partial z}\right)_{r, t}^{2}, \quad\left(\frac{\partial r}{\partial t}\right)_{r_{0}, z_{0}}=u, \quad\left(\frac{\partial z}{\partial t}\right)_{r_{0}, z_{0}}=\vartheta \\
& T\left(r_{0}, z_{0}, 0\right)=0, \quad r\left(r_{0}, z_{0}, 0\right)=r_{0}, \quad z\left(r_{0}, z_{0}, 0\right)=z_{0},
\end{aligned}
$$

If $\mathrm{R} / \mathrm{c} \ll \tau_{1}$ ( C is the velocity of sound in the striker, $\tau_{1}=\delta_{0} / \mathrm{v}_{0}$ is the characteristic time of impact), the deceleration of the striker can be written as:

$$
\begin{equation*}
m \frac{d w}{d t}=2 \pi \int_{0}^{R} p r d r, \quad \delta=\delta_{0}+\int_{0}^{t} w d t, \quad w(0)=-z_{0} \tag{3}
\end{equation*}
$$

We solve Eq. (1) by the method of moments. We take $u$ in the form of a series

$$
u=z(\delta-z)\left[f_{0}(r, \delta)+z f_{1}(r, \delta)+\ldots\right]
$$

which satisfies the conditions of adhesion of the liquid at $z=0$ and $z=\delta$. Muitiplying the equation of motion (1) by $z^{n}(n=0,1,2, \ldots)$ and integrating it over the thickness of the layer from 0 to $\delta$ we ob-


Fig. 1
tain a system of differential equations which is equivalent to (1) at the limit $n \rightarrow \infty$. Integrating the continuity equation with respect to $z$ and confining ourselves to the zero approximation in Eq. (4) we find

$$
v=-\frac{1}{r} \frac{\partial}{\partial r} r \int_{0}^{z} u d z, \quad \text { i. e. } \quad u=\frac{3 w r z(z-\delta)}{\delta^{3}}
$$

$$
\begin{equation*}
v=\frac{w z^{2}(3 \delta-2 z)}{\delta^{3}} \tag{5}
\end{equation*}
$$

Using Eqs. (2) and (5) and converting from to $\delta$, we establish a relationship between the moving and Lagrangian coordinates and determine the temperature distribution

$$
\begin{gather*}
\frac{d r}{u}=\frac{d z}{v}=\frac{d \delta}{w}, \quad \frac{d \delta}{d t}=w, \quad r=r_{0}\left[\frac{\delta_{0}(\delta+e)}{\delta\left(\delta_{0}+e\right)}\right]^{3 / 4}, \\
e=\frac{z_{0} \delta_{0}\left(\delta_{0}-z_{0}\right)}{\left(0.5 \delta_{0}-z_{0}\right)^{2}}, \\
z=\frac{\delta}{2}\left[1 \pm \sqrt{\delta /(\delta+e)]} \quad\left(\begin{array}{l}
\text { for } z>0.5 \delta \\
- \\
\text { for } z<0.5 \delta
\end{array}\right),\right. \\
T=\frac{9}{p_{0} c_{p}} \int_{\delta_{0}}^{\delta} \frac{\mu w r^{2}(\delta-2 z)^{2}}{\delta^{6}} d \delta, \quad T_{*}=\frac{9 \mu_{0} R^{2}}{P_{0} c_{p}} \int_{\delta_{0}}^{\delta} \frac{w}{\delta^{4}} d \delta \tag{6}
\end{gather*}
$$

It follows from (6) that the maximum temperature $T_{1}$ is attained at the points $r=R, z=0$, and $r=R, z=\delta$. Using Eqs. (4) and averaging Eq. (1) over $z$, we find

$$
\begin{gather*}
\frac{\partial p}{\partial r}=\frac{6 w \mu_{0} r}{\delta^{3}}\left(\mu_{1}+\psi\right), \quad \psi=\frac{\rho_{0} \delta^{2}}{12 \mu_{0}} \frac{d w}{d \delta}-\frac{0.15 \rho_{0} \delta w}{\mu_{0}} \\
\mu=\mu_{0} \mu_{1}[p, T(r, 0, t)] \tag{7}
\end{gather*}
$$

Here $T(r, 0, t)$ is expressed from (6) on the condition $z=0$ and, hence, $E=r_{0}$. Integration of Eq. (7) for arbitrary variation of the viscosity with $p$ and $T$ requires numerical calculation even within the


Fig. 2
framework of the assumptions made. However, in special cases the solution is obtained in quadratures

$$
\begin{gather*}
\int_{0}^{p} \frac{d x}{\mu_{1}(x)+\psi}=\frac{3 w \mu_{0}}{\delta^{3}}\left(r^{2}-R^{2}\right), \quad \mu_{1}=\mu_{1}(p), \\
\int_{0}^{y_{1}} \frac{\delta^{3} d x}{3 w \mu_{0}\left[A(x / \theta)^{\omega}+\psi\right]-x \delta^{3}}=2 \ln \frac{r}{R}, \\
A=\left(\frac{\rho_{0} c_{p} T_{0} \delta_{0}^{3}}{9(n+1) \mu_{0} v_{0}}\right)^{\omega}, \quad \theta=\frac{T_{*} p_{0} C_{p} \delta_{0}^{3}}{9 \mu_{0} R^{2} v_{0}}, \quad \mu_{1}=\left(\frac{p}{r^{2}}, \quad \omega=\frac{n}{n+1},\right. \\
p=\frac{3 w \mu_{0}}{\delta^{3}}\left[\left(r^{2}-R^{2}\right) \psi+(n+1) A \theta^{-\omega}\left(\frac{2}{r^{\frac{1}{n+1}}-R^{n+1}}\right)\right] \\
y_{1} \\
\mu_{1}=\left(\frac{T_{0}}{T}\right)^{n} . \tag{8}
\end{gather*}
$$

Using Eq. (8) we obtain the equation of deceleration of the striker, which in dimensionless form for the case $\mu_{1}=\left(T_{0} / T\right)^{n}$, for instance, is written thus:

$$
\begin{gather*}
(1+\lambda \beta \xi) \frac{d}{d \xi} \xi^{-2} \frac{d \theta}{d \xi}+1.8 \lambda \beta \xi^{-2} \frac{d \theta}{d \xi}+\lambda x \xi \theta^{-\omega}=0 \\
\theta=\int_{0}^{\xi} \xi_{0}^{2} w_{1} d \xi \\
\theta(1)=0,(d \theta / d \xi)_{1}=1, \quad w=-w_{1} v_{0} \\
\xi=\delta_{0} / \delta, \quad \beta=0.15 \rho_{0} v_{0} \delta_{0} / \mu_{0} \\
\lambda=5 \pi \mu_{0} R^{4} / 6 m v_{0} \delta_{0}^{2} \\
x=3.6(n+1) A R^{-2 \omega} /(n+2) \tag{9}
\end{gather*}
$$

This equation is easily integrated numerically. If $\beta \rightarrow 0$, then Eqs. (9) allows a similarity group and on substitution of the variables $\nu=\theta \xi^{\varepsilon}, z=\mathrm{d} \nu / \mathrm{d} \ln \xi, \varepsilon=-5(\mathrm{n}+1) /(2 \mathrm{n}+1)$ reduces to an equation of the first order. If $n=0$, i.e., $\mu=$ const, then $E q$. (9) is integrated in finite form

$$
\begin{gather*}
w_{1}=\left(\frac{y_{0}}{y}\right)^{1.8}+\frac{1}{\lambda \beta^{2}}\left[1-\left(\frac{y_{0}}{y}\right)^{1.8}\right]-\frac{g_{y}}{14 \lambda \beta^{2}}\left[1-\left(\frac{y_{0}}{y}\right)^{2.8}\right] \\
t_{1}=\int_{1}^{\xi} w_{1}^{-1 \xi} \xi^{-2} d \xi \\
y=1+\lambda \beta \xi, \quad y_{0}=1+\lambda \beta, \quad t_{1}=t / \tau_{1} \tag{10}
\end{gather*}
$$

It follows from (10) that at large $\xi$ we have $\mathrm{w}_{1} \approx 1 / \lambda \beta^{2}-9 \xi / 14 \beta$. Hence, the striker stops when the layer has a finite thickness $\xi=\boldsymbol{\xi}_{\text {w }}$,

Close to $\xi=\xi_{*}$ we have $w_{1}=18 \lambda \xi_{; ~}\left(\xi_{i}-\xi\right) /\left(1+\lambda \beta \xi_{*}\right)$ and, hence, when $\xi \rightarrow \xi_{i t}$, the value of $\mathrm{t}_{1}$ increases as $\ln \left[1 /\left(\xi_{z}-\xi\right)\right]$.

At low Reynolds numbers the inertia forces become smaller than the viscosity forces and relationships (10) give the law of motion of the striker in the problem of [1]

$$
\begin{gather*}
\omega_{1}=1+0.9 \lambda\left(1-\xi^{2}\right) \\
0.9 \lambda t_{1}=\frac{1}{a^{2}}\left[1-\frac{1}{\xi}+\frac{1}{2 a} \ln \frac{(a+\xi)(a-1)}{(a-\xi)(a+1)}\right] \\
a^{2}=\frac{1+0.9 \lambda}{0.9 \lambda} \tag{11}
\end{gather*}
$$

It follows from (10) that the velocity of the striker decreases monotonically with time. However, the radial velocity of flow at the point $\mathrm{z}_{1}=0.5 \delta, \mathrm{r}=\mathrm{R}$ at instant $\xi_{1}$ and pressure at point $\mathrm{r}=0$ for $\xi=$ $=\xi_{2}$ attain maxima $u_{1}\left(\xi_{1}\right)$ and $p_{1}\left(\xi_{2}\right)$, which are determined from the relationships

$$
\begin{gather*}
u_{1}=\frac{4 \delta_{0} u\left(R, z_{1}, \xi\right)}{3 v_{0} R}=\xi w_{1}, \\
p_{1}=\frac{\delta_{0}^{3} p\left(0, \xi_{0}\right)}{3 \mu_{0} v_{0} R^{2}}=w_{1} \xi^{2} \frac{\beta w_{1}+\xi}{1+\lambda \beta \xi},  \tag{12}\\
w_{0}\left(1-0.8 \lambda \beta \xi_{1}\right)=1.8 \mu \xi_{1} 1^{2}, \\
2 \beta\left(1-0.8 \lambda \beta \xi_{2}\right) u_{2}^{2}+3 \xi_{2}\left(1-0.8 \lambda \beta \xi_{2}\right) w_{2}=1.8 \lambda_{2}^{3} \\
w_{0}=w_{1}\left(\xi_{1}\right), \quad w_{2}=w_{1}\left(\xi_{2}\right) . \tag{13}
\end{gather*}
$$

When $\beta \rightarrow 0$ we find from Eqs. (11) and (13) that $\xi_{1}=a^{1 / 3^{0.5}}$, $\xi_{2}=a 3_{5}^{0.5}$. Figure 1 gives the results of calculations of the dimensionless pressure $p_{2}=0.01 p_{1}$, the temperature $\theta_{1}=0.01 \theta_{1}$ the time $t_{2}=$ $=0.5 \mathrm{t}_{1}$, and the velocities of the liquid $\mathrm{u}_{2}=0.1 \mathrm{u}_{1}$ and striker $\mathrm{w}_{1}$ in relation to $\xi$ for $\beta=10$ and $\lambda=0.01$.

In Fig. 2 these quantities at the maximum points are plotted as functions of $\beta ; u_{k}=u_{2}\left(\xi_{1}\right), p_{*}=p_{2}\left(\xi_{1}\right), \theta_{1}=\theta\left(\xi_{1}\right)$ and $\xi_{0}=0.1 \xi_{1}$.

The graphs show that the maximum velocity of outward flow is several times greater than the initial velocity and the maximum pressure (at small $B$ ) is even two orders greater. If the energy of elastic
strain of the striker is greater than $\mathrm{mv}_{0}^{2} / 2$, the compressibility of the striker must be taken into account. Since the compression time $t_{1}$ increases logarithmically, the characteristic time is of the order of unity.

We can consider the problem of the spread of a drop between two infinite plates. In this case the variable radius of the drop is expressed from the law of conservation of mass $R^{2}(t) \delta=R_{0}^{2} \delta_{0}$ and the problem is solved in the same way as above. However, such a procedure is valid only in cases where the cumulative splash of the liquid at $z=\delta / 2$ can be neglected.

We will now estimate the correctness of the hypothesis of a quasistationary parabolic velocity profile in the Reynolds problem ( $\beta \rightarrow 0$ ) in the case of impact compression. The hypothesis of quasistationarity is valid if the characteristic time of formation of the viscous velocity profile $\tau_{2} \ll \tau_{1}$. If we consider the dimensions, then $\tau_{2} \sim \rho_{0} \delta_{0}^{2} / \mu_{0}$. However, the solution of the simplified problem of development of a viscous flow shows that $\tau_{2}$ is an order less. This is important, since the solution depends exponentially on the time.

We will consider an instant $t_{\theta}$, close to the initial instant, but such that the pressure over the thickness of the layer manages to even out: $\tau_{0}>\delta_{0} / c$. We will assume the velocity of the striker to be constant and we will take the initial distribution of $u$ in the form $u(r, z, 0)=$ $=v_{0} r / 2 \delta_{0}$, which satisfies the continuity equation. In the equations of motion (1) we neglect the inertial terms, and retain the derivative $\partial u / \partial t$. The solution of Eqs. (17) shows that this is valid everywhere, except for the layer near the wall, where when $t \rightarrow 0$ the velocity gradients $\sim t^{-0.5}$ are of the same order as the acceleration [2]. However, physical sense demands that $t>t_{0}$. To get rid of the "movable boundary ${ }^{\prime \prime} \delta(t)$, we convert to new variables $\eta=z / \delta$ and $\tau=(\xi-$ $-1) / \delta_{0}$, Then the system of equations, like (1), is written thus:

$$
\begin{gather*}
\rho_{0} v_{0} \frac{\partial u}{\partial \tau}+\rho_{0} v_{0} \delta \frac{\partial u}{\partial \eta}+\frac{\partial \varphi}{\partial r}=\mu_{0} \frac{\partial^{2} u}{\partial \eta^{2}} \\
\int_{0}^{1} u d \eta=\frac{v_{0} r}{2}\left(\tau+\frac{1}{\delta_{0}}\right) \\
\varphi=p \delta^{2}, \quad u(r, \eta, \dot{0})=v_{0} r, 2 \delta_{0}, \quad u(r, 0, \tau)=0 \\
u(r, 1, \tau)=0, \quad \varphi(R, \tau)=0 \tag{14}
\end{gather*}
$$

We omit the term with $\delta$ in (14), since it is of the order vdu/ $\partial \mathrm{y}$ of the discarded inertia terms. Performing the Laplace transformation we obtain equations for the velocity images $u \doteqdot U$ and the pressure analog $\varphi \doteqdot$.

$$
\begin{gather*}
\rho_{0} v_{0} s U-\frac{\rho_{0} v_{0}^{2}}{2 \delta_{0}} r \div \frac{\partial P}{\partial r}=\mu_{0} \frac{\partial^{2} U}{\partial \eta^{2}} \\
\int_{0}^{1} U d \eta=\frac{v_{0} r}{2 s}\left(\frac{1}{S}+\frac{1}{\delta_{0}}\right) \\
U(r, 0)=0, \quad U(r, 1)=0, \quad P(R)=0 \tag{15}
\end{gather*}
$$

Integrating Eq. (15), we obtain

$$
\begin{gather*}
U=\frac{v_{0} r\left(s+\delta_{0}\right) x \operatorname{sh} x \eta \operatorname{sh} x(1-\eta)}{\delta_{0} s^{2}(x-\operatorname{th} x) \operatorname{ch} x} \\
P=\frac{\rho_{0} v_{0}^{2}\left(R^{2}-r^{2}\right)}{4 \delta_{0}}\left[\frac{\left(s+\delta_{0}\right) x}{s(x-\operatorname{th} x)}-1\right] \\
x=0.5\left(\frac{\rho_{0} v_{0} s}{\mu_{0}}\right)^{1 / 4} \tag{16}
\end{gather*}
$$

It is easy to find the asymptotic form of Eq. (16) when $s \rightarrow \infty$

$$
\begin{gathered}
U=\frac{v_{0} r}{2 \delta_{0} s}[1+1 / x- \\
P=\frac{\rho_{0} v_{0}^{2}}{4}\left[\frac{1}{s}+\frac{1}{x \delta_{0}}\right]\left(R^{2}-r^{2}\right), \quad \text { for } \quad t \rightarrow 0, \\
u=\frac{v_{0} r_{0}}{2 \delta_{0}}\left[1+4\left(\frac{\mu_{0} \tau}{\pi \rho_{0} v_{0}}\right)^{1 / 2}-\operatorname{Erf} \frac{\eta}{2}\left(\frac{\rho_{0} v_{0}}{\mu_{0} \tau}\right)^{1 / 2}-\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.-\operatorname{Erf} \frac{1-\eta}{2}\left(\frac{\sigma_{0} v_{0}}{\mu_{0} \tau}\right)^{1 / 2}+\ldots\right], \\
p=\frac{\rho_{0} v_{0}{ }^{2}}{4 \delta^{2}}\left(R^{2}-r^{2}\right)\left[\frac{2}{\delta_{0}}\left(\frac{\mu_{0}}{\pi \rho_{0} v_{0} \tau}\right)^{1 / 2} \exp (-\tau)+1+\ldots\right] \cdot(17)
\end{gathered}
$$

It follows from (17) that p increases infinitely when $\mathrm{t} \rightarrow 0$. This is due to the fact that instantaneous stoppage of the wall layer of liquid requires infinite friction forces $\sim \tau^{-0.5}$, counterbalanced by inertial forces and the pressure, which is assumed constant over the thickness of the layer. The formulas for the originals for $t>0$ can be obtained from Eqs. (16) by expanding $U$ and $\varphi$ in power series and using the residue theorem [3]. Special points in the plane slie on the left of the imaginary axis. At point $s=0$ there is a pole of the second order. Simple poles are situated at the points $s_{k}=-4 \mu \mu_{k}{ }^{2} / \rho_{0} V_{0}$, $\operatorname{tg} \alpha_{k}=\lambda_{k}\left(\lambda_{1}=4.493\right)$ and, hence,

$$
\begin{gathered}
u=\frac{3 v_{0}\ulcorner\eta(1-\eta)}{\delta}+ \\
+\sum_{k=1}^{\infty} \frac{2 v_{0} r\left(s_{k}+\delta_{0}\right) \operatorname{sh} \eta x_{k} \operatorname{sh}(1-\eta) x_{k}}{\delta_{0} s_{k} x_{k} \operatorname{sh} x_{k}} \exp \left(-\frac{4 \mu \lambda_{k}{ }^{2} \tau}{\rho_{0} v_{0}}\right)
\end{gathered}
$$

$$
\begin{gather*}
p=\frac{3 v_{0} \mu_{0}\left(R^{2}-r^{2}\right)}{\delta^{s}} \times \\
\times\left[1+0.1 \frac{p_{0} v_{0} \delta}{\mu}+\frac{2}{3} \frac{\delta}{\delta_{0}} \sum \frac{\delta_{0}+s_{k}}{s_{k}} \exp \left(-\frac{4 \mu \lambda_{k}^{2} \tau}{\rho_{0} v_{0}}\right)\right] . \tag{18}
\end{gather*}
$$

It is clear from (18) that the solution rapidly (with characteristic time $\tau_{3}=\tau_{2} / 4 \lambda_{1}$ ) reaches the quasistationary regime.

The author thanks $V$. K. Bobolev for suggesting the problem and discussing the results, and also A. S. Kompaneits and G. T. Afanas'ev for useful discussion.

## REFERENCES

1. Yu. B. Khariton, Collection of Papers on the Theory of Explosives [in Russian], Oborongiz, 1940.
2. N. A. Slezkin, Dynamics of a Viscous Incompressible Fluid [in Russian], Gostekhizdat, 1955.
3. M. A. Lavrent'ev and B. V. Shabat, Methods in the Theory of Functions of a Complex Variable [in Russian], Fizmatgiz, 1958.
